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Abstract
The temperature inversion symmetry, for a non-interacting supersymmetric
ensemble, at finite volume, is studied. It is found that the scaled free
energy, f (ξ), is antisymmetric under temperature inversion transformation, i.e.
f (ξ) = −ξdf

(
1
ξ

)
. This occurs for antiperiodic bosons and periodic fermions

in the compact dimension. In contrast, for periodic bosons and antiperiodic
fermions, f (ξ) = ξdf

(
1
ξ

)
.

PACS numbers: 11.30.−j, 11.10.−z

1. Introduction

One of the most interesting phenomena in quantum field theory is the Casimir effect. It
expresses the quantum fluctuations of the vacuum of a quantum field. It originates from the
‘confinement’ of a field in finite volume. Many studies have been done since H Casimir’s
original work. The Casimir energy, usually calculated in these studies, is closely related to
the boundary conditions of the fields under consideration. Boundary conditions influence the
nature of the so-called Casimir force, which is generated from the vacuum energy.

By calculating the Casimir energy at finite temperature, one finds many interesting
properties of fermionic and bosonic fields. In [2], the temperature inversion symmetry of
the Casimir energy, for a spin-0 bosonic field, at finite temperature, was studied. The author
actually examined some thermodynamic quantities for a bosonic field, at finite temperature
and with a compact space dimension, in three spatial dimensions, i.e. a space having S1 × R2

spatial topology. He found that the quantity,

f (ξ) = − Ld−1

�
(

d
2

)
ξdπ− d

2

F, (1)

i.e. the scaled free energy f (ξ) of a spin-0 bosonic field (ξ = LT ), with F,

F ∼ T
∑
n,m

∫
dk2 ln

[
k2 + (2πnT )2 +

(
2πm

L

)2
]

, (2)
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is invariant under the transformation L → 1
T

(L is the length of the compact dimension). As
it can be easily seen from relation (2), he used periodic boundary conditions, corresponding
to the compact dimension and periodic for the ‘temperature dimension’ (consistent with the
KMS relations). In previous and later results [3–8], the symmetries, which the function
(1) has, were studied and calculations for other fields, such as fermions and gauge fields,
with various boundary conditions, were done. Studying thermodynamical quantities of fields
in such topological spaces is of great importance (for example in microelectronics where
characteristic distances become small [9]).

In this work, the free energy for an ensemble of massless, non-interacting bosons and
fermions, with equal degrees of freedom, in spaces with R1

Z∞
× Rd−2 spatial topologies

at finite temperature, will be examined (d is the total dimension of the spacetime before
compactification, Z∞ the infinite cyclic group). Specifically, the temperature inversion
symmetry shall be studied for this ensemble.

2. General set-up

One ensemble corresponding to massless, non-interacting bosons and fermions, with equal
degrees of freedom, is the massless N = 1, d = 4, Wess–Zumino model. The massless, on
the shell Wess–Zumino Lagrangian, is

L = ∂µϕ+∂µϕ + i�γ µ∂µ�, (3)

with � a Majorana spinor. Writing (3) in terms of two real fields φ1, φ2, ϕ = φ1 + iφ2, we
obtain

L = ∂µϕ1∂
µϕ1 + ∂µϕ2∂

µϕ2 + i�γ µ∂µ�. (4)

The total space-‘time’ is of the form T ⊗ R1

Z∞
×R2, T being the ‘temperature time dimension’.

Note that Z∞ must be a symmetry of the Lagrangian. The compactification of R1 to R1

Z∞
allows

us to use generic boundary conditions for bosons and fermions in the compact dimension (of
course there is some complication with supersymmetry and boundary conditions, for which,
the reader is referred to the end of this section. The formulation adopted here is equivalent
[1]). These are

ϕi(x2, x3, τ, x1) = eiπn1α ϕi(x2, x3, τ, x1 + n1L)

�(x2, x3, τ, x1) = eiπn1δ �(x2, x3, τ, x1 + n1L),
(5)

with, 0 � α, δ � 1, i = 1, 2, n1 = 1, 2, 3, . . . , while the finite-temperature boundary
conditions are (consistent with KMS relations)

ϕi(x2, x3, τ, x1) = ϕi(x2, x3, τ + β, x1)

�(x2, x3, τ, x1) = −�(x2, x3, τ + β, x1),
(6)

with β = 1
T

. One can check that (4) is invariant for each representation of Z∞. The free
energy at finite volume for the above ensemble is

F = Fbosonic + Ffermionic, (7)

with Fbosonic, the total bosonic free energy (for φ1, φ2). Writing explicitly the free energies we
obtain

F = T

∞∑
n,m=−∞

∫
dk2

(2π)2
ln

[
k2 + (2πnT )2 +

(
π(2m + α)

L

)2
]

− T

∞∑
n,m=−∞

∫
dk2

(2π)2
ln

[
k2 + ((2n + 1)πT )2 +

(
π(2m + δ)

L

)2
]

. (8)
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For some choices of α, and δ, infrared singularities will occur, and of course an ultraviolet
singularity. The UV will be regularized, using zeta regularization techniques [10] while, where
necessary, infrared cutoffs will be used to deal with the infrared divergences [2].

Case α = 1, δ = 0. If one chooses α = 1, δ = 0, n1 = 1, gets

F = T

∞∑
n,m=−∞

∫
dk2

(2π)2
ln

[
k2 + (2πnT )2 +

(
π(2m + 1)

L

)2
]

− T

∞∑
n,m=−∞

∫
dk2

(2π)2
ln

[
k2 + ((2n + 1)πT )2 +

(
2πm

L

)2
]

. (9)

Relation (9) in d dimensions (at the end d = 4) is written as

F = T

∞∑
n,m=−∞

∫
dkd−2

(2π)d−2
ln

[
k2 + (2πnT )2 +

(
π(2m + 1)

L

)2
]

− T

∞∑
n,m=−∞

∫
dkd−2

(2π)d−2
ln

[
k2 + ((2n + 1)πT )2 +

(
2πm

L

)2
]

, (10)

and upon using∫
dkd

(2π)d
ln(k2 + a2) = −�

(− d
2

)
(4π)

d
2

ad, (11)

(10) becomes

F = −T
�

(
2−d

2

)
(4π)

d−2
2

( ∞∑
n,m=−∞

(
(2πnT )2 +

(
π(2m + 1)

L

)2) d−2
2

−
∞∑

n,m=−∞
((2n + 1)πT )2 +

(
2πm

L

)2 ) d−2
2 )

.

By introducing the dimensionless parameter ξ = LT , we obtain

F = −T
�

(
2−d

2

)
(4π)

d−2
2

(
2π

L

)d−2 ( ∞∑
n,m=−∞

(
ξ 2n2 +

(
m +

1

2

)2 ) d−2
2

−
∞∑

n,m=−∞

(
ξ 2

(
n +

1

2

)2

+ m2

) d−2
2 )

. (12)

In (12), the troublesome gamma function �
(

2−d
2

)
appears, which will be cancelled later on.

Now, with the aid of the two-dimensional form of the Epstein zeta function,

Z2

∣∣∣∣g1 g2

h1 h2

∣∣∣∣ (a, a1, a2) =
∞∑

n,m=−∞
(a1(n + g1)

2 + a2(m + g2)
2)−a × exp[2π i(nh1 + mh2)],

(12) becomes

F = −T
�

(
2−d

2

)
(4π)

d−2
2

(
2π

L

)d−2 (
Z2

∣∣∣∣0 1
2

0 0

∣∣∣∣ (2 − d

2
, ξ 2, 1

)
− Z2

∣∣∣∣ 1
2 0
0 0

∣∣∣∣ (2 − d

2
, ξ 2, 1

) )
.

(13)
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To extend analytically the two-dimensional Epstein zeta, to values Re a < 1, we use the
functional equation,

Z2

∣∣∣∣g1 g2

h1 h2

∣∣∣∣ (a, a1, a2) = (a1a2)
− 1

2 π2a−1 �(1 − a)

�(a)
× exp[−2π i(g1h1 + g2h2)]

×Z2

∣∣∣∣ h1 h2

−g1 −g2

∣∣∣∣ (1 − a,
1

a1
,

1

a2

)
, (14)

and (13) reads

F = −T
�

(
2−d

2

)
(4π)

d−2
2

(
2π

L

)d−2 (
(ξ 2)−

1
2 π

2−2d
2

�
(

d
2

)
�

(
2−d

2

)Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
,

1

ξ 2
, 1

)
− (ξ 2)−

1
2 π1−d

�
(

d
2

)
�

(
2−d

2

)Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
,

1

ξ 2
, 1

) )
. (15)

Finally after some algebra we get

F = −�
(

d
2

)
ξdπ− d

2

Ld−1

(
Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, 1, ξ 2

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, 1, ξ 2

) )
, (16)

where the troublesome �
(

2−d
2

)
(in four dimensions) gamma function has been cancelled. By

introducing the function f (ξ),

f (ξ) = − Ld−1

�
(

d
2

)
ξdπ− d

2

F

= ξd

(
Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, 1, ξ 2

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, 1, ξ 2

))
, (17)

we can see that

f

(
1

ξ

)
= 1

ξd

(
Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, 1,

1

ξ 2

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, 1,

1

ξ 2

) )
, (18)

or equivalently,

f

(
1

ξ

)
= Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, ξ 2, 1

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, ξ 2, 1

)
. (19)

From the last expression we easily obtain

Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, ξ 2, 1

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, ξ 2, 1

)
=

(
Z2

∣∣∣∣0 0
0 − 1

2

∣∣∣∣ (d

2
, 1, ξ 2

)
− Z2

∣∣∣∣ 0 0
− 1

2 0

∣∣∣∣ (d

2
, 1, ξ 2

) )
. (20)

Thus, combining (17), (19) and (20), we get

f (ξ) = −ξdf

(
1

ξ

)
. (21)

Relation (21) is a realization of an antisymmetry that the initial ensemble possesses, under the
transformation L → 1

T
, or equivalently, ξ → 1

ξ
(if we can say, this is a kind of anti-duality).

The function f (ξ) is related to the free energy of the system and, through this, to other
thermodynamic quantities of the ensemble (it is also related to the effective potential). Let us
check the physical implications of (21). The high temperature free energy is

F = −T dπ
2−d

2 �

(
d

2

) (
Z1

∣∣∣∣00
∣∣∣∣ (d) − Z1

∣∣∣∣ 0
− 1

2

∣∣∣∣ (d)

)
, (22)



Study of temperature inversion symmetry for the twisted Wess–Zumino model 5729

which in d = 4 is

F = −T 4π−2

(
π4

45
+

7π4

360

)
. (23)

The zero-temperature Casimir energy for the same ensemble is

Eo = −L−dπ
2−d

2 �

(
d

2

) (
Z1

∣∣∣∣ 0
− 1

2

∣∣∣∣ (d) − Z1

∣∣∣∣00
∣∣∣∣ (d)

)
(24)

which for d = 4 reads

Eo = 1

L4
π−2

(
π4

45
+

7π4

360

)
. (25)

Relations (23) and (25) reflect what (21) expresses that the high-temperature free energy of the
boson fermion ensemble under consideration is equal to the minus zero temperature Casimir
energy. This anti-duality found above was due to choosing antiperiodic boundary conditions
for bosons (α = 1), and periodic for fermions (δ = 0 ), in the compact dimension. There
is a mathematical reason for this choice. Isham [11] used these configurations, and called
them twisted fields. These are classified by H 1(S1×R2, Z2̃), the first Stieffel cohomology
group which, in our case, is, H 1(S1×R2, Z2̃) = Z2 for the spatial section of T ⊗ R1

Z∞
× R2.

Note that the temperature does not affect the topological properties of the space [12] and that
R1

Z∞
= S1. The allowed choices, dictated from H 1(S1×R2, Z2̃), are periodic and antiperiodic

bosons and fermions. Our choice was antiperiodic bosons and periodic fermions, which does
not influence the supersymmetry transformations [11, 12]. In addition the Lagrangian is
even under H 1(S1×R2, Z2̃) for this choice. In the following section, antiperiodic fermions
and periodic bosons shall be used (similarly this choice does not influence supersymmetry
transformations).

Case α = 0, δ = 1
2 . Another case, which will be briefly mentioned, is the choice, α = 0,

δ = 1
2 , n1 = 1 in (8). Following the steps of the previous section, one easily obtains the free

energy of the system:

F = −T
�

(
2−d

2

)
(4π)

d−2
2

(
2π

L

)d−2 ( ∞∑
n,m=−∞

(ξ 2n2 + m2)
d−2

2

−
∞∑

n,m=−∞

(
ξ 2

(
n +

1

2

)2

+

(
m +

1

2

)2 ) d−2
2 )

. (26)

After taking care of the infrared singularity in the bosonic sector [2], one obtains finally

F = −�
(

d
2

)
ξdπ− d

2

Ld−1

(
Z2

∣∣∣∣0 0
0 0

∣∣∣∣ (d

2
, 1, ξ 2

)
− Z2

∣∣∣∣ 0 0
− 1

2 − 1
2

∣∣∣∣ (d

2
, 1, ξ 2

) )
, (27)

and using the definition of (17) and the Epstein-zeta properties we obtain

f (ξ) = ξdf

(
1

ξ

)
. (28)

One can easily check that the high temperature free energy is equal to the zero-temperature
Casimir effect, which is expressed from (28).
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3. Conclusions

Studies of the dualities that physical systems have are of great importance. In this paper, a
kind of duality was examined, expressed in terms of the temperature inversion symmetry of
thermodynamic quantities for a supersymmetric ensemble (N = 1, d = 4 Wess–Zumino with
S1×R2 spatial topology, at finite temperature). This symmetry connects the free energy at high
temperatures (Boltzmann law), with the zero-temperature Casimir energy. Two cases were
studied in this work. (a) The first case, with the chiral superfield of the Wess–Zumino model,
consists of periodic fermions and antiperiodic bosons in the compact dimension. In this case,
we found that the function f (ξ), defined in (17), is antisymmetric under the transformation
ξ → 1

ξ
, i.e. f (ξ) = −ξdf

(
1
ξ

)
. Thus the high-temperature free energy of the boson fermion

ensemble is equal to the minus zero-temperature Casimir energy. (b) The second case in which
periodic bosons and antiperiodic fermions in the compact dimension were used. In this case,
the function f (ξ) was found symmetric under the transformation ξ → 1

ξ
, i.e. f (ξ) = ξdf

(
1
ξ

)
.

Consequently, the high-temperature free energy is equal to the zero-temperature Casimir
energy. The function f (ξ) is related to the free energy of the system under consideration
and the results show how boundary conditions can affect the quantum structure of the system,
in terms of f (ξ). Finally, one can easily observe that if ξ = 1, then the free energy of the
system, composed of periodic fermions and antiperiodic bosons, becomes equal to zero. The
ξ = 1 limit corresponds to the case L = 1

T
. If interactions were added, then, maybe, this limit

could connect phase transitions at some critical temperature, with a dual critical length. If the
free energy remains zero at this limit, the question is what the physics of a system with zero
free energy at a temperature T �= 0 is (one system having zero free energy is the d5 Ads black
hole with Ricci flat horizons). The zero of the free energy occurs for the Hawking temperature
TBH = 1

lnBH
(l the radius of the asymptotic Ads space), and determines the critical point of the

transition, Ads black hole to Ads soliton [13]).
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